Courses

texture-research-image

Undergraduate Courses

Fall 2020

Life in the Universe
This course introduces students to a new field, Astrobiology, where scientists trained in biology, chemistry, astrophysics and geology combine their skills to investigate life's origins and to seek extraterrestrial life. Topics include: the origin of life on earth,the prospects of life on Mars, Europa, Titan, Enceladues and extra-solar planets, as well as the cosmological setting for life and the prospects for SETI. 255 is the core course for the planets and life certificate.
Instructors: Christopher F. Chyba, Michael H. Hecht, Tullis C. Onstott, Edwin Lewis Turner
Introduction to Water Pollution Technology
An introduction to the science of water quality management and pollution control in natural systems; fundamentals of biological and chemical transformations in natural waters; indentification of sources of pollution; water and wastewater treatment methods; fundamentals of water quality modeling.
Instructors: Peter R. Jaffé
Modeling the Earth System: Assessing Strategies for Mitigating Climate Change
This course is an introduction to earth system modeling for students interested in global environmental issues. Students will use a "compact" or "reduced" earth system model, including the ocean, the land and the atmosphere, to examine how the system responds to human activities and natural climate variations. In small groups, they will design mitigation and geo-engineering scenarii (reforestation, carbon capture, emission limitation etc.), test their impact using the model and analyze and discuss their results. This course is designed to give students a critical thinking about climate models, their strengths and their limitations.
Instructors: Laure Resplandy
Climate: Past, Present, and Future
Which human activities are changing our climate, and does climate change constitute a major problem? We will investigate these questions through an introduction to climate processes and an exploration of climate from the distant past to today. We will also consider the impact of past and ongoing climate changes on the global environment and on humanity. Finally, we will draw on climate science to identify and evaluate possible courses of action. Intended to be accessible to students not concentrating in science or engineering, while providing a comprehensive overview appropriate for all students.
Instructors: Daniel Mikhail Sigman
Climate: Past, Present, and Future
Which human activities are changing our climate, and does climate change constitute a major problem? We will investigate these questions through an introduction to climate processes and an exploration of climate from the distant past to today. We will also consider the impact of past and ongoing climate changes on the global environment and on humanity. Finally, we will draw on climate science to identify and evaluate possible courses of action. Intended to be accessible to students not concentrating in science or engineering, while providing a comprehensive overview appropriate for all students.
Instructors: Danielle M. Schmitt, Daniel Mikhail Sigman
Fundamentals of Solid Earth Science
A quantitative introduction to Solid Earth system science, focusing on the underlying physical and chemical processes and their geological and geophysical expression. Through the course we investigate the Earth starting from its basic constituents and continue though its accretion, differentiation and evolution and discuss how these processes create and sustain habitable conditions on Earth's surface. Topics include nucleosynthesis, planetary thermodynamics, plate tectonics, seismology, geomagnetism, petrology, sedimentology and the global carbon cycle. Two field trips included.
Earth History
This course seeks to understand the 'how' of Earth history by integrating many branches of Earth system science including geochronology, paleomagnetism, tectonics, petrology, paleoclimate, sedimentology, geochemistry, and geobiology. Through a detailed study of the relevant datasets, models, and theories, students in this course will engage and struggle with these seemingly disparate fields to arrive at a better understanding of how an imperfect geologic record can be used to produce an accurate representation of our planet's history.
Instructors: John Andrew Higgins, Blair Schoene
Environmental Chemistry: Chemistry of the Natural Systems
Covers topics including origin of elements; formation of the Earth; evolution of the atmosphere and oceans; atomic theory and chemical bonding; crystal chemistry and ionic substitution in crystals; reaction equilibria and kinetics in aqueous and biological systems; chemistry of high-temperature melts and crystallization process; and chemistry of the atmosphere, soil, marine and riverine environments. The biogeochemistry of contaminants and their influence on the environment will also be discussed.
Instructors: Satish Chandra Babu Myneni
Mineralogy
Minerals are the fundamental building blocks of the Earth. Their physical, chemical, and structural properties determine the nature of the Earth and they are the primary recorders of the past history of the Earth and other planets. This course will provide a survey of the properties of the major rock-forming minerals. Topics include crystallography, crystal chemistry, mineral thermodynamics and mineral occurrence. Emphasis will be on the role of minerals in understanding geological processes. Laboratories will focus on developing an understanding of crystallography, structure-property relationships, and modern analytical techniques.
Instructors: Thomas S. Duffy
Data, Models, and Uncertainty in the Natural Sciences
This course is for those who want to turn data into models and subsequently evaluate their uniqueness and uncertainty. Three main topics are: 1. Elementary inferential statistics, 2. Model parameter estimation via matrix inverse methods, and 3. Time series analysis and Fourier spectral density estimation. Problem sets and computer programming exercises form integral parts of the course. While the instructor's and textbook examples will be derived mostly from the physical sciences, students are encouraged to bring their own data sets for discussion. Prior programming experience in MATLAB is helpful but not required.
Instructors: Frederik Jozef Simons
Introduction to Ocean Physics for Climate
The study of the oceans as a major influence on the atmosphere and the world environment. The contrasts between the properties of the upper and deep oceans; the effects of stratification; the effect of rotation; the wind-driven gyres; the thermohaline circulation.
Instructors: Sonya Allayne Legg, Gabriel Andres Vecchi
Geodynamics
An advanced introduction to setting up and solving boundary value problems relevant to the solid earth sciences. Topics include heat flow, fluid flow, elasticity and plate flexure, and rock rheology, with applications to mantle convection, magma transport, lithospheric deformation, structural geology, and fault mechanics.
Instructors: Allan Mattathias Rubin

Graduate Courses

Fall 2020

Atmospheric Radiative Transfer
Structure and composition of terrestrial atmospheres. Fundamental aspects of electromagnetic radiation. Absorption and emission by atmospheric gases. Optical extinction of particles. Roles of atmospheric species in Earth's radiative energy balance. Perturbation of climate due to natural and antropogenic causes. Satellite observations of climate system.
Instructors: Yi Ming, Venkatachalam Ramaswamy
Fundamentals of the Geosciences II
A survey of fundamental papers in the Geosciences. Topics include present and future climate, biogeochemical processes in the ocean, geochemical cycles, orogenies, thermochronology, rock fracture and seismicity. This is the core geosciences graduate course.
Instructors: Jeroen Tromp
Theoretical Geophysics
Geophysical applications of the principles of continuum mechanics; conservation laws and constitutive relations and tensor analysis; acoustic, elastic, and gravity wave propagation are studied.
Instructors: Jeroen Tromp