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Introduction 

The introduction should convey the purpose and scope of your study. The introduction also is 

where you include relevant background text and figures that give the reader the necessary context 

to understand the importance and meaning of your study. For example, the introduction might 

contain a map (Fig. 1) depicting sample locations. 
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Figure 1: (a) Simplified geological map (adapted from Preiss & Robertson, 2002)) of the study area 
within the Adelaide Rift Complex (ARC). Locations of measured stratigraphic sections are denoted by 
red circles and labeled with numbered squares. (b) Schematic NW-SE stratigraphic cross-section of the 
Adelaide Rift Complex, highlighting the rift-to-drift transition and major sequence boundaries and U-Pb 
zircon ages. The δ13Ccarb profile (adapted from Halverson et al., 2005) is time-aligned with the right-hand 
edge of the stratigraphic cross-section. 
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Methods 

The methods section should describe how you conducted field work, how you collected samples, 

how you designed lab work, what analytical methods you employed, etc. For example, if you 

collected GPS data, you would describe what type of electronics you used, how you designed 

your sampling, and how you measured the accuracy of individual measurements. You would 

accompany this information with a table or graph depicting, for example, the reproducibility of 

GPS measurements from identical physical locations at different times. 

As another example, if you were modeling the strontium cycle in the ocean with the follow-

ing mass balance equations, you could explain where these equations come from, and include 

Table (1) to collect information about the model variables. 

dMg 
dt 

= WMg−carb +WMg−sil − HMg−clays − PMg−carb (1) 

dCa 
dt 

= WCa−carb +WCa−sil + HCa−basalt − PCa−carb (2) 

dnSr 
dt 

= WnSr−carb +WnSr−sil + HnSr−basalt − PnSr−carb, (3) 

Model Variable 
weathering hydrothermal 
WMg−carb 
WCa−carb 

WtotalSr−carb 

WMg−sil 
WCa−sil 

WtotalSr−sil 

87Sr/86Sr 

2.0×1012 mol/yr1 

10.5×1012 mol/yr1 

1.1×1010 mol/yr2 

4.0×1012 mol/yr1 

4.5×1012 mol/yr1 

0.8×1010 mol yr2 

k 
HMg−clays 

HtotalSr−basalt 

αMg/Ca 

αSr/Ca 

precipitation 

3.75×1013 kg H2O/yr 
k · [Mg] 

αSr/Ca · HCa−basalt 
14 

0.00125 

W87/86Sr−sil 
W87/86Sr−carb 
H87/86Sr−basalt 

0.72002 

0.70752 

0.70302 

PCa−carb 
PMg−carb 
PtotalSr−carb 

KSr 

8.75×1012 mol/yr6 

1.6×1012 mol/yr7 

(Sr/Ca)seawater · KSr · PCa−carb 
0.28 

Table 1: Variables used in the numerical model of Mg, Ca, and Sr. 1Meybeck (2003); 2Allègre et al. 
(2010); 3flux of H2O in hydrothermal systems assuming 100% of the heat flux at 350◦C (Elderfield & 
Schultz, 1996); 4assumes 1:1 stoichiometry between Mg uptake and Ca release during basalt alteration; 
5calculated assuming 200 ppm Sr and 10 wt% CaO; 6calculated assuming carbonate minerals are the 
only alkalinity sink; 7estimated from the long-term rate of dolomitization (Wilkinson & Algeo, 1989); 
8homogeneous distribution coefficient for Sr in calcite (Mucci & Morse, 1983). 
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Results 

This section will contain the bulk of your tables and figures, describing and illustrating the data 

you collected for your project. Do not interpret your data in the Results section. For example, 

let’s say you collected information about the minimum ejecta thickness around a ∼2 km diameter 

bolide impact crater in India. You could collect those results in a figure like Fig. 2. However, 

you would avoid discussing the significance and meaning of these results until the Discussion 

section. 
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Figure 2: Minimum ejecta thickness measurements (circles-rim fold; squares-large blocks; triangles-
small clasts at Lonar Crater, India. Average Lonar ejecta thickness profile (solid line) is compared to a 
ballistic ejecta thickness from experimental craters (dashed line McGetchin et al., 1973) and the topo-
graphic profile for a typical fresh Martian crater (grey line, scaled to Earth Stewart & Valiant, 2006). Rceb 

denotes the average extent of the continuous ejecta blanket (vertical dotted lines). Note the accumulation 
of ejecta amounting to ~5 times ballistic predictions at the distal edge of continuous ejecta blanket. 
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Discussion 

The Discussion section is where you have the chance to interpret the results you just reported on. 

Additional figures to illustrate your interpretations are useful. For example, you might compile 

your data with data from other sources to challenge existing hypotheses or generate new big-

picture ideas. 

So at this point we might sum up the main findings with a summary figure, for instance, as 

follows from Dahlen & Simons (2008). Fig. 3 shows the large-l variance ratio (σ2 
∞)

MT plotted 

versus the bandwidths 0 ≤ L ≤ 20 for single polar caps of various radii 0◦ ≤ Θ ≤ 180◦ and 

double polar caps of various radii 0◦ ≤ Θ ≤ 90◦ . In the degenerate case L = 0, bandlimited 

∞)
MT‘multitaper’ estimation is tantamount to whole-sphere estimation so (σ2 = 1 regardless of 

the ‘cap’ size Θ. Indeed, in that case, the estimate is unbiased, Mll0 = δll0 , and at L = 0, the 

single possible taper is a constant over the entire sphere. For sufficiently large regions (Θ & 30◦ 

for a single cap and Θ & 15◦ for a double cap) the large-l variance ratio is a monotonically 

decreasing function of the bandwidth L; for smaller regions the ratio attains a maximum value 

∞)
MT(σ2 > 1 before decreasing. The grey curves are isolines of fixed Shannon number K = 

(A/4π)(L + 1)2; it is noteworthy that the K = 1 isoline passes roughly through the maxima of 

(σ2 
∞)

MT , so that for K ≥ 2–3 the variance ratio is a decreasing function of the bandwidth L 

regardless of the cap size. Since K is the number of retained tapers, it will always be greater than 

2–3 in a realistic multitaper analysis. For large Shannon numbers, above K ≈ 10, the dependence 

upon the bandwidth L and area A for both a single or double cap can be approximated by the 

empirical relation (σ2 
∞)

MT ≈ (4π/A)0.88/(2L + 1). In particular, if A = 4π, the large-l variance 

ratio is to a very good approximation equal to one divided by the number of adjacent degrees 

l − L ≤ l0 ≤ l + L that are averaged over by the coupling matrix Mll0 . As noted in Section , 

a whole-sphere multitaper estimate ŜMT can be regarded as a weighted linear combination of l 

ŜWSwhole-sphere estimates of the form ∑l0 Mll0 l0 , so the variance is reduced by the number of 

ŜWS ŜWSindependent random variates ŜWS 
l−L, . . . , , . . . , l+L that contribute to the estimate. For smallerl 

regions of area A ≈ 4π the whole-sphere variance ratio 1/(2L + 1) is empirically found to be 
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Figure 3: Variation of the large-l multitaper variance ratio (σ2 
∞)

MT with bandwidth 0 ≤ L ≤ 20 for 
single polar caps of radii Θ = 0◦ ,10◦ ,20◦ ,30◦ ,40◦ ,50◦ ,70◦ ,100◦ ,180◦ (left) and double polar 
caps of common radii Θ = 0◦ ,5◦ ,10◦ ,20◦ ,30◦ ,40◦ ,60◦ ,90◦ (right). Ranges of the Shannon num-
ber K = (A/4π)(L + 1)2 are distinguished by different symbols: open circles 0 ≤ K ≤ 1, closed 
circles 1 ≤ K ≤ 10, open squares 10 ≤ K ≤ 100, closed squares K ≥ 100. Grey curves labeled 
K = 1,10,100 are Shannon number isolines. Axes are logarithmic to illustrate the 1/(2L + 1) 
bandwidth scaling above K ≈ 10. 

increased by a factor (4π/A)0.88. In fact, it is very reasonable to approximate the nearly-whole-

l )
MT ≈ (4π/A)0.88(σ2 

l )
MTsphere variance ratio at large Shannon numbers by (σ2 
A=4π for all spherical 

harmonic degrees 0 ≤ l ≤ ∞. 

Conclusions 

Unlike the Results section (page 3), this section should be a clear statement of the major conclu-

sions you have drawn from your work. The conclusions should follow clearly from the Results 

and Discussion sections. 
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